Validation of Sentinel-1A SAR Coastal Wind Speeds Against Scanning LiDAR

نویسندگان

  • Tobias Ahsbahs
  • Merete Badger
  • Ioanna Karagali
  • Xiaoli Guo Larsén
چکیده

High-accuracy wind data for coastal regions is needed today, e.g., for the assessment of wind resources. Synthetic Aperture Radar (SAR) is the only satellite borne sensor that has enough resolution to resolve wind speeds closer than 10 km to shore but the Geophysical Model Functions (GMF) used for SAR wind retrieval are not fully validated here. Ground based scanning light detection and ranging (LiDAR) offer high horizontal resolution wind velocity measurements with high accuracy, also in the coastal zone. This study, for the first time, examines accuracies of SAR wind retrievals at 10 m height with respect to the distance to shore by validation against scanning LiDARs. Comparison of 15 Sentinel-1A wind retrievals using the GMF called C-band model 5.N (CMOD5.N) versus LiDARs show good agreement. It is found, when nondimenionalising with a reference point, that wind speed reductions are between 4% and 8% from 3 km to 1 km from shore. Findings indicate that SAR wind retrievals give reliable wind speed measurements as close as 1 km to the shore. Comparisons of SAR winds versus two different LiDAR configurations yield root mean square error (RMSE) of 1.31 ms−1 and 1.42 ms−1 for spatially averaged wind speeds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Technical Evaluation of Sentinel-1 IW Mode Cross-Pol Radar Backscattering from the Ocean Surface in Moderate Wind Condition

The Sentinel-1 synthetic aperture radar (SAR) allows sufficient resources for cross-pol wind speed retrievals over the ocean. In this paper, we present technical evaluation on wind retrieval from both Sentinel-1A and Sentinel-1B IW cross-pol images. Algorithms are based on the existing theoretical and empirical ones derived from the RADARSAT-2 cross-pol data. First, to better understand the Sen...

متن کامل

Wind Direction Extraction from SAR in Coastal Areas

This paper aims to illustrate and test a method, based on the Two-Dimensional Continuous Wavelet Transform (2D-CWT), developed to extract the wind directions from the Synthetic Aperture Radar (SAR) images. The knowledge of the wind direction is essential to retrieve the wind speed by using the radar-backscatter versus wind speed algorithms. The method has been applied to 61 SAR images from diff...

متن کامل

Comparison of Geophysical Model Functions for SAR Wind Speed Retrieval in Japanese Coastal Waters

This work discusses the accuracies of geophysical model functions (GMFs) for retrieval of sea surface wind speed from satellite-borne Synthetic Aperture Radar (SAR) images in Japanese coastal waters characterized by short fetches and variable atmospheric stability conditions. In situ observations from two validation sites, Hiratsuka and Shirahama, are used for comparison of the retrieved sea su...

متن کامل

Wind Energy Mapping Using Synthetic Aperture Radar

Wind energy off-shore is gaining much interest due to the high wind power potentials. The need is to map wind climatology and regional wind patterns in coastal regions. In the WEMSAR (Wind Energy Mapping using Synthetic Aperture Radar) project three European sites will be covered near Norway, Denmark and Italy. Data to be used are from the ERS-2 C-band scatterometer with a 50 km resolution, fro...

متن کامل

Preliminary Assessment of Wind and Wave Retrieval from Chinese Gaofen-3 SAR Imagery

The Chinese Gaofen-3 (GF-3) synthetic aperture radar (SAR) launched by the China Academy of Space Technology (CAST) has operated at C-band since September 2016. To date, we have collected 16/42 images in vertical-vertical (VV)/horizontal-horizontal (HH) polarization, covering the National Data Buoy Center (NDBC) buoy measurements of the National Oceanic and Atmospheric Administration (NOAA) aro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017